Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(7): e28514, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38586395

ABSTRACT

Plastic pollution is an ever-increasing threat globally and poor waste management in South Africa has caused an increase in plastic leakage into the environment. Plastic waste in the environment are categorized according to size and plastic particles smaller than 5 mm in size are regarded as microplastics (MPs), and little to no research has been done on MPs pollution within the marine coastal environment and rocky shores in South Africa. Sampling was done in February 2020 at a rocky shore within Simon's Town Marina, Cape Town. MPs were extracted from collected water (n = 5), sediment (n = 5) and biota (n ≤ 30) samples. The extracted MPs were further classified based on shape, colour, size and an attenuated total reflectance Fourier-transform infrared (ATR-FTIR) instrument was utilized for polymer type identification The risks posed by MPs because of concentration at which they occurred and chemical composition were assessed in all the sample types. As expected, MPs were higher in sediment (38 ± 2 MP/kg) than in water (0.37 ± 0.06 MP/L) as the area has low water energy, allowing MP particles to settle within the sediment. Filter-feeding organisms had the lowest average MP particle concentrations (0.28 ± 0.04 MP/g) but displayed the highest variation of MP particle colours due to the non-selective feeding strategy, where other feeding strategies ingested mostly black/grey particles. The dominant MP size was between 100 µm and 500 µm in size for all samples combined, with the most abundant MP polymer type being nylon (27.27 %), polyethylene terephthalate (PET) (18.18 %) and natural MP particles such as cotton (18.18 %). The risk assessment indicated that polymer type poses a greater risk of MP pollution than MP concentrations.

2.
PeerJ ; 12: e16916, 2024.
Article in English | MEDLINE | ID: mdl-38371378

ABSTRACT

Background: The population structure and breeding biology of the Xanthid crab, Leptodius exaratus (H. Milne Edwards, 1834), on the rocky intertidal region of Shivrajpur in Saurashtra coast, Gujarat state, were examined. Method: From March 2021 to February 2022, monthly sampling was conducted during low tide using catch per unit effort in the 500 m2 area. The sampled specimens were categorised into male, non-ovigerous female or ovigerous female. In order to estimate fecundity, the morphology of the crab specimens (carapace width and body weight) as well as the size of eggs, number of eggs and weight of egg mass were recorded. Results: A total of 1,215 individuals were sampled of which 558 individuals were males and 657 individuals were females. The size (carapace width) of males ranges from 5.15 to 29.98 mm, while females ranges from 5.26 to 28.63 mm which shows that the average size of male and female individuals did not differ significantly. The overall as well as monthly sex ratio was skewed towards males with a bimodal distribution while unimodal in females. The population breeds year-round, which was indicated by the occurrence of ovigerous females throughout the year. However, the maximum percentage occurrence of ovigerous females was observed from December to April which indicates the peak breeding season. The size of eggs, number of eggs and weight of egg mass were shown to positively correlate with the morphology of ovigerous females (carapace width and wet weight).


Subject(s)
Brachyura , Animals , Female , Male , Brachyura/anatomy & histology , Fertility , India , Seasons , Sex Ratio
3.
FEMS Microbiol Ecol ; 100(3)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38327185

ABSTRACT

The way strong environmental gradients shape multispecific assemblages has allowed us to examine a suite of ecological and evolutionary hypotheses about structure, regulation and community responses to fluctuating environments. But whether the highly diverse co-occurring microorganisms are shaped in similar ways as macroscopic organisms across the same gradients has yet to be addressed in most ecosystems. Here, we characterize intertidal biofilm bacteria communities, comparing zonation at both the "species" and community levels, as well as network attributes, with co-occurring macroalgae and invertebrates in the same rocky shore system. The results revealed that the desiccation gradient has a more significant impact on smaller communities, while both desiccation and submersion gradients (surge) affect the larger, macroscopic communities. At the community level, we also confirmed the existence of distinct communities within each intertidal zone for microorganisms, similar to what has been previously described for macroorganisms. But our results indicated that dominant microbial organisms along the same environmental gradient exhibited less differentiation across tidal levels than their macroscopic counterparts. However, despite the substantial differences in richness, size and attributes of co-occurrence networks, both macro- and micro-communities respond to stress gradients, leading to the formation of similar zonation patterns in the intertidal rocky shore.


Subject(s)
Ecosystem , Microbiota , Biodiversity , Bacteria/genetics
4.
Ecology ; 105(3): e4246, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38286517

ABSTRACT

Understanding how synchronous species fluctuations affect community stability is a main research topic in ecology. Yet experimental studies evaluating how changes in disturbance regimes affect the synchrony and stability of populations and communities remain rare. We hypothesized that spatially heterogeneous disturbances of moderate intensity would promote metacommunity stability by decreasing the spatial synchrony of species fluctuations. To test this hypothesis, we exposed rocky shore communities of algae and invertebrates to homogeneous and gradient-like spatial patterns of disturbance at two levels of intensity for 4 years and used synchrony networks to characterize community responses to these disturbances. The gradient-like disturbance at low intensity enhanced spatial ß diversity compared to the other treatments and produced the most heterogeneous and least synchronized network, which was also the most stable in terms of population and community fluctuations. In contrast, homogeneous disturbance destabilized the community, enhancing spatial synchronization. Intense disturbances always reduced spatial ß diversity, indicating that strong perturbations could destabilize communities via biotic homogenization regardless of their spatial structure. Our findings corroborated theoretical predictions, emphasizing the importance of spatially heterogeneous disturbances in promoting stability by amplifying asynchronous spatial and temporal fluctuations in population and community abundance. In contrast to other networks, synchrony networks are vulnerable to the removal of most peripheral nodes, which are less synchronized, but may contribute more to stability than other nodes by dampening large fluctuations in species abundance. Our findings suggest that climate change and direct anthropogenic disturbance can compromise the stability of ecological communities through combined effects on diversity and synchrony, as well as further affecting ecosystems through habitat loss.


Subject(s)
Ecology , Ecosystem , Animals , Invertebrates , Light
5.
Ecology ; 105(1): e4205, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37947006

ABSTRACT

Current latitudinal diversity gradient (LDG) meta-analyses have failed to distinguish one of the most widespread marine habitats, the intertidal zone, as a separate system despite it having unique abiotic challenges and spatially compressed stress gradients that affect the distribution and abundance of resident species. We address this issue by revisiting published literature and datasets on LDGs since 1911 to explore LDG patterns and their strengths in intertidal benthic, subtidal benthic, and pelagic realms and discuss the importance of recognizing intertidal ecosystems as distinct. Rocky shorelines were the most studied intertidal ecosystem encompassing 64.2% of intertidal LDG studies, and 62.9% of studies focused on assemblage composition, while the remaining 37.1% of studies were taxa specific. While our analyses confirmed LDGs in subtidal benthic and pelagic realms, with a decrease in richness toward the poles, we found no consistent intertidal LDGs in any ocean or coastline across hemispheres or biodiversity unit. Analyzing intertidal and subtidal zones as separate systems increased the strength of subtidal benthic LDGs relative to analyses combining these systems. We demonstrate that in intertidal ecosystems across oceans in both hemispheres, a latitudinal decrease in species richness is not readily apparent, which stands in contrast with significant LDG patterns found in the subtidal realm. Intertidal habitat heterogeneity, regional environmental variability and biological interactions can create species-rich hot spots independent of latitude, which may functionally outweigh a typical latitudinal decline in species richness. Although previous work has shown weaker LDGs in benthic than pelagic systems, we demonstrate that this is caused by combining subtidal and intertidal benthic ecosystems into a single benthic category. Thus, we propose that subtidal and intertidal ecosystems cannot be combined into one entity as the physical and biological parameters controlling ecosystem processes are vastly different, even among intertidal ecosystems. Thus, the intertidal zone offers a unique model system in which hypotheses can be further tested to better understand the complex processes underlying LDGs.


Subject(s)
Biodiversity , Ecosystem , Oceans and Seas
6.
J Exp Biol ; 226(21)2023 11 01.
Article in English | MEDLINE | ID: mdl-37909420

ABSTRACT

How intertidal species survive their harsh environment and how best to evaluate and forecast range shifts in species distribution are two important and closely related questions for intertidal ecologists and global change biologists. Adaptive variation in responses of organisms to environmental change across all levels of biological organization - from behavior to molecular systems - is of key importance in setting distribution patterns, yet studies often neglect the interactions of diverse types of biological variation (e.g. differences in thermal optima owing to genetic and acclimation-induced effects) with environmental variation, notably at the scale of microhabitats. Intertidal species have to cope with extreme and frequently changing thermal stress, and have shown high variation in thermal sensitivities and adaptive responses at different levels of biological organization. Here, I review the physiological and biochemical adaptations of intertidal species to environmental temperature on multiple spatial and temporal scales. With fine-scale datasets for the thermal limits of individuals and for environmental temperature variation at the microhabitat scale, we can map the thermal sensitivity for each individual in different microhabitats, and then scale up the thermal sensitivity analysis to the population level and, finally, to the species level by incorporating physiological traits into species distribution models. These more refined mechanistic models that include consideration of physiological variations have higher predictive power than models that neglect these variations, and they will be crucial to answering the questions posed above concerning adaptive mechanisms and the roles they play in governing distribution patterns in a rapidly changing world.


Subject(s)
Climate Change , Ecosystem , Humans , Temperature , Phenotype
7.
Ann Bot ; 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37971357

ABSTRACT

BACKGROUND AND AIMS: Marine macroalgae ('seaweeds') are critical to coastal ecosystem structure and function, but also vulnerable to the many environmental changes associated with Anthropogenic Climate Change (ACC). The local habitat conditions underpinning observed and predicted ACC-driven changes in intertidal macroalgal communities are complex and likely site-specific, in addition to more commonly reported regional factors like sea surface temperatures. METHODS: We examined how the composition and functional trait expression of macroalgal communities in SW England varied with aspect (i.e., north-south orientation) at four sites with opposing Equator- (EF) and Pole-facing (PF) surfaces. Previous work at these sites had established that average annual (low tide) temperatures vary by 1.6°C and that EF surfaces experience six-fold more frequent extremes (i.e., > 30°C). KEY RESULTS: PF macroalgal communities were consistently more taxon rich; eleven taxa were unique to PF habitats, with only one restricted to EF. Likewise, functional richness and dispersion were greater on PF surfaces (dominated by algae with traits linked to rapid resource capture and utilization, but low desiccation tolerance), although differences in both taxon and functional richness were likely driven by the fact that less diverse EF-surfaces were dominated by desiccation-tolerant fucoids. CONCLUSIONS: Although we cannot disentangle the influence of temperature variation on algal ecophysiology from the indirect effects of aspect on species interactions (niche pre-emption, competition, grazing etc), our study system provides an excellent model for understanding how environmental variation at local scales affects community composition and functioning. By virtue of enhanced taxonomic diversity, PF-aspects supported higher functional diversity, and consequently, greater effective functional redundancy. These differences may imbue PF-aspects with resilience against environmental perturbation, but if predicted increases in global temperatures are realised, some PF-sites may shift to a depauperate, desiccation-tolerant seaweed community with a concomitant loss of functional diversity and redundancy.

8.
Mar Environ Res ; 192: 106236, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37939496

ABSTRACT

Paracentrotus lividus is a sea urchin widely distributed throughout Mediterranean basin and Atlantic coast, highly appreciated for its gonads. It is broadly distributed along the Portuguese coast and its exploitation has potential to grow. Nevertheless, fluctuations on nutritional composition and sensory traits of P. lividus according to each habitat and seasonality are still little understood. Stable isotopes analysis has been recognised as a powerful tool for exploring environmental-ecological-biological processes in aquatic systems. It is also useful to give indications on how to improve available diets for the aquaculture of this species, contributing to a sustainable rearing. Herein, such technique was used to assess temporal and spatial differences in isotopic composition of P. lividus' gonads and intestines and to evaluate its application as a management tool for the identification of the most suitable locations and periods of the year to collect organisms with high quality gonads. Sampling campaigns were carried out between 2019 and 2020 in five rocky shores along the Portuguese coast (Viana do Castelo, Figueira da Foz, Peniche, Sines and Guia). Three rock pools were selected in each shore, and five specimens were collected per pool. The gonadosomatic index (GSI, %) was calculated and carbon and nitrogen elemental and isotopic composition were determined in gonads and intestine using isotope ratio mass spectrometry. Significant spatial and temporal fluctuations were registered among urchins collected along Portuguese coast. Such variations may be associated with latitudinal gradients along the coast and variations of environmental and ecological conditions within each area, especially those affecting algal biomass, on which urchins primarily feed. More research must be pursued to maximise the use of stable isotopes analysis as a management tool for supporting sustainable exploitation of natural stocks or even to contribute to nutritional studies with new diets for sea urchin production that consider the feeding of these animals in the wild.


Subject(s)
Paracentrotus , Sea Urchins , Animals , Portugal , Gonads/chemistry , Ecosystem , Isotopes/analysis
9.
Zoolog Sci ; 40(4): 314-325, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37522603

ABSTRACT

Eunice aphroditois (Pallas, 1788) is a large polychaete worm (up to 3 m in length) and the type species of the genus. In Japan, a similar but potentially different species, Eunice cf. aphroditois, is distributed mainly in the rocky shores of the temperate and warm Pacific coasts. Juveniles and adults were suggested to be distinguished by their body color. The juvenile form was previously regarded as distinct species, Eunice flavopicta Izuka, 1912 and Eunice ovalifera Fauvel, 1936, although they are now considered synonymous with E. aphroditois. In this study, we revisited the validity of the present taxonomy based on morphological observations including SEM and microCT, and three molecular markers (cytochrome c oxidase subunit I [COI], 16S rRNA, and histone H3 genes) and investigated the phylogenetic position of E. cf. aphroditois in the family Eunicidae using the combined dataset of three genes (COI + 16S rRNA + 18S rRNA). The adult and juvenile forms were different in body size, color, the distribution of the branchiae and subacicular hooks, and maxillae shape, but not in other characteristics. One individual showed an intermediate body color between the two forms. The adult and juvenile forms shared major haplotypes and the maximum K2P genetic distance of COI was 1.7%, which can be considered within intraspecific variation. In the phylogenetic tree based on the combined gene dataset, E. cf. aphroditois was closely related to Eunice roussaei Quatrefages, 1866 and Eunice cf. violaceomaculata Ehlers, 1887, which are large species from the Mediterranean Sea and the Caribbean Sea, respectively.

10.
Ecology ; 104(5): e4027, 2023 05.
Article in English | MEDLINE | ID: mdl-36897574

ABSTRACT

Significant questions remain about how ecosystems that are structured by abiotic stress will be affected by climate change. Warmer temperatures are hypothesized to shift species along abiotic gradients such that distributions track changing environments where physical conditions allow. However, community-scale impacts of extreme warming in heterogeneous landscapes are likely to be more complex. We investigated the impacts of a multiyear marine heatwave on intertidal community dynamics and zonation on a wave-swept rocky coastline along the Central Coast of British Columbia, Canada. Leveraging an 8-year time series with high seaweed taxonomic resolution (116 taxa) that was established 3 years prior to the heatwave, we document major shifts in zonation and abundance of populations that led to substantial reorganization at the community level. The heatwave was associated with shifts in primary production away from upper elevations through declines in seaweed cover and partial replacement by invertebrates. At low elevations, seaweed cover remained stable or recovered rapidly following decline, being balanced by increases in some species and decreases in others. These results illustrate that, rather than shifting community zonation uniformly along abiotic stress gradients, intense and lasting warming events may restructure patterns of ecological dominance and reduce total habitability of ecosystems, especially at extreme ends of pre-existing abiotic gradients.


Subject(s)
Aquatic Organisms , Ecosystem , Seaweed , Biodiversity , British Columbia , Stress, Physiological , Hot Temperature
11.
Antonie Van Leeuwenhoek ; 116(1): 39-51, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36396850

ABSTRACT

Members of the genus Alteromonas are widely distributed in diverse marine environments and are often associated with marine organisms. Their ability to produce exopolysaccharides (EPS) and depolymerize sulfated algal polysaccharides has provided industrial importance to some species. Here, we describe the draft genome of an algae-associated strain namely, Alteromonas sp. PRIM-21 isolated from the southwest coast of India to understand the EPS biosynthetic pathways as well as polysaccharide depolymerization system in comparison to the closely related strain Alteromonas fortis 1T that shares 99.8% 16S rRNA gene sequence similarity. Whole-genome shotgun sequencing of Alteromonas sp. PRIM-21 yielded 50 contigs with a total length of 4,638,422 bp having 43.86% GC content. The resultant genome shared 95.9% OrthoANI value with A. fortis 1 T, and contained 4125 predicted protein-coding genes, 71 tRNA and 10 rRNA genes. Genes involved in Wzx/Wzy-, ABC transporter- and synthase-dependent pathways for EPS production and secretion were common in both Alteromonas sp. PRIM-21 and A. fortis 1T. However, the distribution of carbohydrate-active enzymes (CAZymes) was heterogeneous. The strain PRIM-21 harbored polysaccharide lyases for the degradation of alginate, ulvan, arabinogalactan and chondroitin. This was further validated from the culture-based assays using seven different polysaccharides. The depolymerizing ability of the bacteria may be useful in deriving nutrients from the biopolymers produced in the algal host while the EPS biosynthesis may provide additional advantages for life in the stressful marine environment. The results also highlight the genetic heterogeneity in terms of polysaccharide utilization among the closely related Alteromonas strains.


Subject(s)
Alteromonas , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Polysaccharides/metabolism , Genomics , Aquatic Organisms
12.
Sci Total Environ ; 865: 161184, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36581263

ABSTRACT

Environmental filtering (EF), the abiotic exclusion of species, can have first order, direct effects with cascading consequences for population dynamics, especially at range edges where abiotic conditions are suboptimal. Abiotic stress gradients associated with EF may also drive indirect second order effects, including exacerbating the effects of competitors, disease, and parasites on marginal populations because of suboptimal physiological performance. We predicted a cascade of first and second order EF-associated effects on marginal populations of the invasive mussel Mytilus galloprovincialis, plus a third order effect of EF of increased epibiont load due to second order shell degradation by endoliths. Mussel populations on rocky shores were surveyed across 850 km of the south-southeast coast of South Africa, from the species' warm-edge range limit to sites in the centre of their distribution, to quantify second order (endolithic shell degradation) and third order (number of barnacle epibionts) EF-associated effects as a function of along-shore distance from the range edge. Inshore temperature data were interpolated from the literature. Using in situ temperature logger data, we calculated the effective shore level for several sites by determining the duration of immersion and emersion. Summer and winter inshore water temperatures were linked to distance from the mussel's warm range edge (our proxy for an EF-associated stress gradient), suggesting that seasonality in temperature contributes to first order effects. The gradient in thermal stress clearly affected densities, but its influence on mussel size, shell degradation, and epibiosis was weaker. Relationships among mussel size, shell degradation, and epibiosis were more robust. Larger, older mussels had more degraded shells and more epibionts, with endolithic damage facilitating epibiosis. EF associated with a gradient in thermal stress directly limits the distribution, abundance, and size structure of mussel populations, with important indirect second and third order effects of parasitic disease and epibiont load, respectively.


Subject(s)
Mytilus , Animals , Mytilus/physiology , Temperature , Stress, Physiological , Population Dynamics , Water/metabolism
13.
Braz. j. biol ; 83: 1-8, 2023. map, tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1468865

ABSTRACT

The intertidal rocky shores in continental Chile have high species diversity mainly in northern Chile (18-27° S), and one of the most widespread species is the gastropod Echinolittorina peruviana (Lamarck, 1822). The aim of the present study is do a first characterization of spatial distribution of E. peruviana in along rocky shore in Antofagasta town in northern Chile. Individuals were counted in nine different sites that also were determined their spectral properties using remote sensing techniques (LANDSAT ETM+). The results revealed that sites without marked human intervention have more abundant in comparison to sites located in the town, also in all studied sites was found an aggregated pattern, and in six of these sites were found a negative binomial distribution. The low density related to sites with human intervention is supported when spectral properties for sites were included. These results would agree with other similar results for rocky shore in northern and southern Chile.


As costas rochosas entremarés no Chile continental apresentam alta diversidade de espécies, principalmente no norte do país (18-27 ° S), e uma das espécies mais difundidas é o gastrópode Echinolittorina peruviana (Lamarck, 1822). O objetivo do presente estudo é fazer uma primeira caracterização da distribuição espacial de E. peruviana no costão rochoso da cidade de Antofagasta no norte do Chile. Os indivíduos foram contados em nove locais diferentes onde também foram determinadas suas propriedades espectrais usando técnicas de sensoriamento remoto (LANDSAT ETM +). Os resultados revelaram que os locais sem intervenção humana marcada apresentam maior abundância em comparação aos locais localizados no município. Também em todos os locais estudados foi encontrado um padrão agregado, sendo que em seis desses locais foi encontrada uma distribuição binomial negativa. A baixa densidade relacionada a sites com intervenção humana é suportada quando as propriedades espectrais para sites foram incluídas. Esses resultados concordariam com outros resultados semelhantes para costões rochosos no norte e no sul do Chile.


Subject(s)
Animals , Marine Environment , Coasts , Gastropoda/growth & development , Remote Sensing Technology , Binomial Distribution
14.
Braz. j. biol ; 832023.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469081

ABSTRACT

Abstract The intertidal rocky shores in continental Chile have high species diversity mainly in northern Chile (18-27° S), and one of the most widespread species is the gastropod Echinolittorina peruviana (Lamarck, 1822). The aim of the present study is do a first characterization of spatial distribution of E. peruviana in along rocky shore in Antofagasta town in northern Chile. Individuals were counted in nine different sites that also were determined their spectral properties using remote sensing techniques (LANDSAT ETM+). The results revealed that sites without marked human intervention have more abundant in comparison to sites located in the town, also in all studied sites was found an aggregated pattern, and in six of these sites were found a negative binomial distribution. The low density related to sites with human intervention is supported when spectral properties for sites were included. These results would agree with other similar results for rocky shore in northern and southern Chile.


Resumo As costas rochosas entremarés no Chile continental apresentam alta diversidade de espécies, principalmente no norte do país (18-27 ° S), e uma das espécies mais difundidas é o gastrópode Echinolittorina peruviana (Lamarck, 1822). O objetivo do presente estudo é fazer uma primeira caracterização da distribuição espacial de E. peruviana no costão rochoso da cidade de Antofagasta no norte do Chile. Os indivíduos foram contados em nove locais diferentes onde também foram determinadas suas propriedades espectrais usando técnicas de sensoriamento remoto (LANDSAT ETM +). Os resultados revelaram que os locais sem intervenção humana marcada apresentam maior abundância em comparação aos locais localizados no município. Também em todos os locais estudados foi encontrado um padrão agregado, sendo que em seis desses locais foi encontrada uma distribuição binomial negativa. A baixa densidade relacionada a sites com intervenção humana é suportada quando as propriedades espectrais para sites foram incluídas. Esses resultados concordariam com outros resultados semelhantes para costões rochosos no norte e no sul do Chile.

15.
Braz. j. biol ; 83: e246889, 2023. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1285639

ABSTRACT

Abstract The intertidal rocky shores in continental Chile have high species diversity mainly in northern Chile (18-27° S), and one of the most widespread species is the gastropod Echinolittorina peruviana (Lamarck, 1822). The aim of the present study is do a first characterization of spatial distribution of E. peruviana in along rocky shore in Antofagasta town in northern Chile. Individuals were counted in nine different sites that also were determined their spectral properties using remote sensing techniques (LANDSAT ETM+). The results revealed that sites without marked human intervention have more abundant in comparison to sites located in the town, also in all studied sites was found an aggregated pattern, and in six of these sites were found a negative binomial distribution. The low density related to sites with human intervention is supported when spectral properties for sites were included. These results would agree with other similar results for rocky shore in northern and southern Chile.


Resumo As costas rochosas entremarés no Chile continental apresentam alta diversidade de espécies, principalmente no norte do país (18-27 ° S), e uma das espécies mais difundidas é o gastrópode Echinolittorina peruviana (Lamarck, 1822). O objetivo do presente estudo é fazer uma primeira caracterização da distribuição espacial de E. peruviana no costão rochoso da cidade de Antofagasta no norte do Chile. Os indivíduos foram contados em nove locais diferentes onde também foram determinadas suas propriedades espectrais usando técnicas de sensoriamento remoto (LANDSAT ETM +). Os resultados revelaram que os locais sem intervenção humana marcada apresentam maior abundância em comparação aos locais localizados no município. Também em todos os locais estudados foi encontrado um padrão agregado, sendo que em seis desses locais foi encontrada uma distribuição binomial negativa. A baixa densidade relacionada a sites com intervenção humana é suportada quando as propriedades espectrais para sites foram incluídas. Esses resultados concordariam com outros resultados semelhantes para costões rochosos no norte e no sul do Chile.


Subject(s)
Humans , Animals , Ecosystem , Gastropoda , Chile
16.
J Phycol ; 58(6): 746-759, 2022 12.
Article in English | MEDLINE | ID: mdl-36199189

ABSTRACT

Euendolithic, or true-boring, cyanobacteria actively erode carbonate-containing substrata in a wide range of environments and pose significant risks to calcareous marine fauna. Their boring activities cause structural damage and increase susceptibility to disease and are projected to only intensify with global climate change. Most research has, however, focused on tropical coral systems, and limited information exists on the global distribution, diversity, and substratum specificity of euendoliths. This metastudy aimed to collate existing 16S rRNA gene surveys along with novel data from the south coast of South Africa to investigate the global distribution and genetic diversity of endoliths to identify a "core endolithic cyanobacterial microbiome" and assess global diversification of euendolithic cyanobacteria. The cyanobacterial families Phormidesmiaceae, Nodosilineaceae, Nostocaceae, and Xenococcaceae were the most prevalent, found in >92% of categories surveyed. All four known euendolith clusters were detected in both intertidal and subtidal habitats, in the North Atlantic, Mediterranean, and South Pacific oceans, across temperate latitudes, and within rock, travertine tiles, coral, shell, and coralline algae substrata. Analysis of the genetic variation within clusters revealed many organisms to be unique to substratum type and location, suggesting high diversity and niche specificity. Euendoliths are known to have important effects on their hosts. This is particularly important when hosts are globally significant ecological engineers or habitat-forming species. The findings of this study indicate high ubiquity and diversity of euendolithic cyanobacteria, suggesting high adaptability, which may lead to increased community and ecosystem-level effects with changing climatic conditions favoring the biochemical mechanisms of cyanobacterial bioerosion.


Subject(s)
Anthozoa , Cyanobacteria , Microbiota , Animals , RNA, Ribosomal, 16S/genetics , Ecosystem , Phylogeny , Cyanobacteria/genetics
17.
Mar Environ Res ; 173: 105515, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34753049

ABSTRACT

Invasive seaweeds are listed among the most relevant threats to marine ecosystems worldwide. Biodiversity hotspots, such as the Mediterranean Sea, are facing multiple invasions and are expected to be severely affected by the introduction of new non-native seaweeds in the near future. In this study, we evaluated the consequences of the shift from the native Ericaria brachycarpa to the invasive Asparagopsis taxiformis habitat on the shallow rocky shores of Favignana Island (Egadi Islands, MPA, Sicily, Italy). We compared algal biomass and species composition and structure of the associated epifaunal assemblages in homogenous and mixed stands of E. brachycarpa and A. taxiformis. The results showed that the biomass of primary producers is reduced by 90% in the A. taxiformis invaded habitat compared to the E. brachycarpa native habitat. The structure of the epifaunal assemblages displayed significant variations among homogenous and mixed stands. The abundance, species richness and Shannon-Wiener diversity index of the epifaunal assemblages decreased by 89%, 78% and 40%, respectively, from homogenous stands of the native E. brachycarpa to the invasive A. taxiformis. Seaweed biomass was the structural attribute better explaining the variation in epifaunal abundance, species richness and diversity. Overall, our results suggest that the shift from E. brachycarpa to A. taxiformis habitat would drastically erode the biomass of primary producers and the associated biodiversity. We hypothesize that a complete shift from native to invasive seaweeds could ultimately lead to bottom-up effects on rocky shore habitats, with negative consequences for the ecosystem structure, functioning, and the services provided.


Subject(s)
Ecosystem , Seaweed , Biodiversity , Eutrophication , Mediterranean Sea , Sicily
18.
Ecol Evol ; 11(21): 15141-15152, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34765166

ABSTRACT

We tested the response of algal epifauna to the direct effects of predation and the indirect consequences of habitat change due to grazing and nutrient supply through upwelling using an abundant intertidal rhodophyte, Gelidium pristoides. We ran a mid-shore field experiment at four sites (two upwelling sites interspersed with two non-upwelling sites) along 450 km of the south coast of South Africa. The experiment was started in June 2014 and ran until June 2015. Four treatments (predator exclusion, grazer exclusion, control, and procedural control) set out in a block design (n = 5) were monitored monthly for algal cover for the first 6 months and every 2 months for the last 6 months. Epifaunal abundance, species composition, algal cover, and algal architectural complexity (measured using fractal geometry) were assessed after 12 months. Predation had no significant effect on epifaunal abundances, while upwelling interacted with treatment. Grazing reduced the architectural complexity of algae, with increased fractal dimensions in the absence of grazers, and also reduced algal cover at all sites, though the latter effect was only significant for upwelling sites. Epifaunal community composition was not significantly affected by the presence of herbivores or predators but differed among sites independently of upwelling; sites were more similar to nearby sites than those farther away. In contrast, total epifaunal abundance was significantly affected by grazing, when normalized to algal cover. Grazing reduced the cover of algae; thus, epifaunal abundances were not affected by the direct top-down effects of predation but did respond to the indirect effects of grazing on habitat availability and quality. Our results indicate that epifaunal communities can be strongly influenced by the indirect consequences of biotic interactions.

19.
Mar Environ Res ; 172: 105482, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34656855

ABSTRACT

Marine rocky intertidal organisms are amongst those most affected by climate change with regional distributional changes observed for many species. Although often ascribed to increased sea surface temperatures, precise assessment of the local habitat conditions underpinning observed and predicted changes in community assembly is lacking. Here we examine how aspect (i.e. north-south orientation) affects intertidal community composition and how rock surface temperatures and stress responses of two dominant grazer species (Patella spp.) elucidate emergent differences. We quantified year-round temperature variation and surveyed intertidal community composition on paired natural rock gullies with Equator- (EF) and Pole-facing (PF) surfaces. We also investigated variation in limpet (Patella spp.) reproductive phenology and osmotic stress. Average annual temperatures were 0.8 °C (1.6 °C at low tide) higher, with six-fold more frequent extremes (i.e. > 30 °C) on EF than PF surfaces. Intertidal community composition varied with aspect across trophic levels with greater overall species richness, abundance of primary producers and grazers on PF-surfaces, and greater barnacle abundance on EF-surfaces. Although species richness of organisms from different biogeographical origins ('Boreal' or 'Lusitanian') did not vary, the Lusitanian limpet Patella depressa exhibited earlier reproductive development on EF-surfaces and both limpet species exhibited greater thermal stress on EF-surfaces. We argue that our study system provides a good model for understanding how temperature variation at local scales can affect community composition, as well as ecophysiological and ecological responses to climate change and so better inform and predict regional range shifts over coming decades.


Subject(s)
Gastropoda , Thoracica , Animals , Climate Change , Ecosystem , Temperature
20.
Mar Environ Res ; 170: 105410, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34271484

ABSTRACT

Quantifying scale-dependent patterns and linking ecological to environmental variation is required to understand mechanisms regulating biodiversity. We conducted a large-scale survey in rocky shores along the SE Brazilian coast to examine spatial variability in body size and density of an intertidal barnacle (Chthamalus bisinuatus) and its relationships with benthic and oceanographic predictors. Both the size and density of barnacles showed most variation at the smallest spatial scales. On average, barnacle body size was larger on shores located in areas characterised by higher chlorophyll levels, colder waters, low wave action and low influence of freshwater. Barnacles were more abundant at wave-exposed shores. We identified critical scales of spatial variation of an important species and linked population patterns to essential environmental predictors. Our results show that populations of this barnacle are coupled to scale-dependent oceanographic variation. This study offers insights into the mechanisms regulating coastal populations along a little studied coastline.


Subject(s)
Ecosystem , Thoracica , Animals , Biodiversity , Invertebrates , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...